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I. INTRODUCTION

In 1977, Lloyd and Brown1 investigated the feasibility ofcontrolling a 105mm spinning projectile by means of horizontal andvertical side forces. Their numerical calculations yielded the sur-prising result that an applied constant-amplitude yaw moment couldcause dynamic instability. The usual linear analysis seems to predictthat such a moment would cause a steady-state horizontal trim anglebut would have no effect on the dynamic stability.

This difficulty was resolved by Lloyd and Brown through the obser-vation that the differential equation for the angular motion in fixed-plane coordinates* contained nonlinear terms in FP I the coordinate
system spin rate. These usually neglected terms vanish completelywhen the equations are transformed to nonrolling coordinates. Theterms involving the horizoi.tal and vertical control moments becomenonlinear terms that can be easily linearized. The resulting sixth-order system can be approximately solved for large gyroscopic stabilityfactor (s> 4) and excellent agreement with the numerical results ob-tained. g The theory, however, only partially considers the influenceof gravity and neglects the effect of drag and roll damping moment.

In this report, we will show that the coordinate system transfor-mation is unnecessary and that a proper linearization in the fixed-plane coordinates requires the solution of a much simpler fourth-ordersystem. This allows the very easy inclusion in the theory of the fulleffect of gravity as well as the effects of drag and roll damping.Much more importantly, the requirement of high stability factor iseliminated so that the very important case of a finned missile withlittle or no spin can be studied. Finally, the effective technique ofquasi-linearization will be used to derive the effect of the truly non-linear part of the terms on the frequencies and the damping rates
of the motion.

1. K.H. Lloyd and D.P. Brown, "Influence of Gravity and Applied SideForces on the Stability of a Spinning Projectile," Weapons ResearchEstablishment TR 1906(W), South Australia, November 1977,AD A053648. (See also "Instability of Spinning Projectiles DuringTerminal Guidance," Journal of Guidance and Control 2, Jan-Feb 1979,
pp. 65-70.)

*Fixed plane axes x, ., i pitch and yaw with the missile but roll sothat the g-axis is always in the horizontal plane.
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II. EQUATIONS OF MOTION
The plane trajectory of a particle flying at velocity V and

trajectory angle 9T with respect to the horizontal can be described

by the equations 2

/ - C - g* (2.1)

-2el g Ig V cos T (2.2)
T T

where C* a PSD 2m D

g* a g I V"2  sin eT

and where derivatives are with respect to the nondimensional arc-
length, s. These equations are good approximations for the actual
variation of V and 9T for a symmetric missile. The moments and

transverse forces that have a measurable effect on the missile's
motion are usually expressed in missile-fixed coordinates 3 as

Mx ( p S I V2 [65f CX6 + *' Ck] (2.3)

m y + (i Zp S t V 2 [ ( O/ C M p a - i a( 2 4(2.4)

+ C Mqi- i C C, + 1 01
q M&

2. C.H. M",phy, "Gravity-Induced AnguZar Motion of a Spinning
easile," BaZZistic Research Laboratories Report No. 2546, JuZy

1971, AD 730641. (See aZso JournaZ 9L Spaoeoraft and Rockete 8,
August 1972, pp. 824-828.)

3. C.H. M"rphy, "Free FZight Motion of Symnetrico MlsiZes," BaZZiatic
Research Laboratories Report No. 1216, July 1963, AD 442757.
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F i F = p S V2 C (2.5)

where / = p V-

S= (v+ i w) V
1

1 , p = (q + i r) Z V

The complex variable • locates the plane of the velocity vector and
has a magnitude that is the sine of the total angle of attack.

The roll equation can be obtained for the roll moment of
Equation (2.3) and differs from the usual roll equation3 by a gravity
term that acts on the dynamic pressure:

(D + g*) / + D (2.6)

where D C* +k- C*

whreI D a k.

D k-2 6 C*

ka = [x/m / 2]½

In addition to the aerodynamic force and moment and the gravity
force, we assume constant amplitude control forces and moments that are
perpendicular to the projectile's axis and either in the horizontal
plane or the vertical plane containing the missile's axis. These
control forces, which could be produced by roll-stabilized canards,
make fixed-plane coordinates most suitable for the analysis. Since
fixed-plane axes pitch and yaw with the projectile but roll so that
the y axis is always horizo tal, it can be shown that this system has
an angular velocity vector RFP with components4:

FP - ( , (2.7)

4. C.H M hy, "Measurement of Nonlinear Forces and Moments by
Means of Free F1ight "eats "1 Ballistic Research Laboratories
Report io. 974, Fbruar; 156, AD 93523.

7

VW



where FP r tan e

0 is the angle between the missile's axis
and the horizontal (• =

A

q, r are the pitch and yaw rates in the
fixed-plane coordinates

For this coordinate system, the derivatives of the linear and
angular momentum can be computed in the usual way 3' 4 and set equal to
the sum of the external forces and moments. The equations for the
transverse components can then be given in the form of two first-order
complex differential equations:

- i Y Y= - y+ L (i cos 8 + • sin eT)g Z V
01 

(2.8)
.M V2

(Fyc + i FZC t (m V2 )- i CFP

•/- +[ = kt2€ q*p -i ja]

r-2 * * lA

- i kMC

pa

( M Dik2

+ 2(My + i MC)(M V2)-I i

where
P = I 4//I

X y

I-y- uV the cosine of the total angle
of attack

8
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-4
The starred coefficients are of the order 10 while the

dimvnsionless control forces and moments will be limited to at most
10 Thus, products of these terms can be neglected ihen • is
eliminated between Equations (2.8) and (2.9) to obtain:

[H - g - i P14

S.[M + i P T] + G C

where

2 i ' P (P -¢p) + i [0' p (H+@FP F FFP Y" FP]

GC,= [P cos 0 - i v sinO]giV 2 +Pg*(•_iP )

C k i kt (Myc + i MZC) - (P - i y/y-1)(FYc + i FZ) (mV2)

2t (y c)(M V2)-i
i y kt( C+ i MZ

III. LINEARIZED SOLUTION FOR CONTROL MOMENT

For simplicity, we will first neglect the gravity terms in
Equation (2.10) and consider the linear approximation to 0 . In doing
this, it is most important to remember that Equation (2.10) predicts a
steady-state equilibrium angle

Ac 9



S + M(3.1)

If the small force terms are neglected, the real part of Equation

(2.8) yields

-Y i v1  -- ' IV,-+ (3.2)

Equation (3.2) is now multiplied by tan e and solved for

tan 6 (33)
P~p y + a tan e

Now
e f q C e +e)-Y-1 (3.4)8 fq dt "e ee*( &~

a a1 ae) + Ye1 (a tan )(8- e )
FPe ta Y e e e) ed

A2 a A 2)
* a, ( e- ) + a 2  & e- e- e a3 (B-Be) ?

- a 81 tan e (3.5)

e

where

a = [ye + e tan 0 e]'

a, u [2& - (l - 2) a tan e lC2y3)"!
e e e e- 3

a2 u (I + a ye Y6

a 3 & (1 - a2 + 2a ye A2)(a tan 6e)(2 y3)3

Since a linear analysis is concerned with small amplitude motion
about the equilibrium angle te , 9 is expanded in powers of -e

and its derivatives. The linear part of this expansion is:

S•" a tan 8 [e " + (H - i P)O]P (3.6)

10
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The usual solution to the linearized Equation (2.10) neglecting 0 is

S^* i€4 i€

= +e + K1 e + K2 e (3.7)

where

(1/2)(P + 7-j;_4M)

KK =. H + PT - 0'!
K'./K. X.

It is important to note that I'.I 102 and IX 1 10-4

For ascending or descending flight, 0 introduces terms in

•: (' E)/2 and (Z" + j/212

The linearized Equation (2.10) becomes

1 + (a i e /2) tan E + (H -i P) -(M 0i P

[ e
(3.8)

C ( -- t

As is shown in Reference 5, the effect of the conjugte terms

in Equation L3.8) is to add two additional modes in and -

For reasonable values of e , the amplitude of these modes will be

much less than K and K2 . If we approximate the actual solution by

the two-mode solution of Equation (3.7) and substitute in Equation
(3.8), the conjugate terms have no contribution to the damping or

5. C.H. ftrphy, "AnguZar Motion of Spinning AZmoet Symmetrio
iWie8iU8," U.S. Army Armament Research and Development Command,

BaZlistic Reaearoh Laboratory TechnicaZ Report 02121, November 1978,
AD A063538.

•,. 11
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frequency equations obtained from the coefficients of exp (t *j)

For simplicity, we make the usual size assumptions (iA I << Ilo
Jll << 1'j 1 jTI << 10 i1) and retain only terms linear in ae and 0e

- P + M + tan e [M a + P T ]/2 =0 (3.9)
e e e

H + PT - tan e [M - PT a ]/2
Sj - e e e(3.10)

2 P

IV. LINEARIZED SOLUTION FOR GRAVITY

For no control forces (C = 0), Equation (2.10) predicts a steady-
state equilibrium angle

Ee M + i P(T - g G/M (4.1)

where
G =P g V cos ee

Since a is zero, 0 = e and the linearized G and 0 become
e T e

G = G - i g* P 8 (4.2)

- i g* (P/M)(iN + (H - i P)8'] (4.3)

Equation (2.10) reduces to

+ (H - g* - i P)ý' - (M + i P T)C

(4.4)
i, -G÷ i g* (P/)[8" + (H- i P)8' - N]

V 12
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SThe solution to Euation (4.4) can be approximated by the two-mode
Equation (3.7) with the result that the second term on the right ofrquation (4.4) has no measurable contribution to the frequency or
damping.

- P + M 0 (4.S)

- (- g*) + P T

J ~2€0-P

Vifferentiating Equation (4.5),

= (4.7)

Since D2 in Equation (2.6) is zero for a body of revolution, the

damping rate for a shell becomes

- H 0. + P T (D P + 2 0'. (P - 0'.) g* M- 1
x, ........ . .(4.8)

2 .(2 Ip)2

It is interesting tp note that as the gyroscopic stability increases,

0 goes to P and 02 goes to 0 and the contribution of gravity to

damping decays to zero.

Equation (4.6) is precisely the same as that in Reference 2.
The derivation given in Reference 2, however, separately neglected

3 the second term in Equation (4.2) and all of 0 . The correct deriva-
tion combines these terms and shows that their combined effect can be
neglected.

13
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V. QUASILINEAR ANALYSIS OF

For horizontal flight without control forces or gravity, 0 is

cubic and was shown in Reference 4 to cause a change in frequency.
Numerical calculations by Clark and Hodapp 6 showed that this frequency
shift was very well predicted by the quasilinear analysis. In this
section, we will derive the quasilinear prediction for cubic 0 and
ascending or descending flight with control forces but no gravity.

The cubic part of the nonlinear term in y' on the left side of
Equation (2.10) can be easily computed:

1 2 '
(Y, /Y) &' Z .£.~L

2

The quasilinear technique then assumes an undamped motion of the form
of Equation (3.7) and seeks the average in-phase and out-of-phase
contributions to the coefficient of K. exp(i 0 )by the relation

i3

(F. - 1 Sw
[Flj,av K. S f F e ds (5,2)

JW 0

If there is no equilibrium angle, S is 27r - the wave-

length of • exp(-i~i) . For nonzero equilibrium angles, the integrand

has several wavelengths present and SW is taken to be large compared

to the largest of these.

Now

S-- I K1K (e -2-i

+/I Z K1 (ei -1e ) * K2 6c(e2- i

____ ____ ____(5.3)

6. E.L. Clark, Jr., and A.E. Hodapp, "An Improved Technique for
Determining Misaile Roll Rate with the Epicyclic Theor'y," Sandia
Laboratoriee SC-DC-70-4768, April 1970.

14
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where

"C 0! " €

Therefore,
[Y' Y'1 V'1,av a (1/2) K2 2

2 1 2 2

+ (41) 2 K2 6 K 1 e1 t(2 2 1

(5.4)

where SW
1[ ay - j l ds

av S
W 0

For a special value of spin, 2 ¢2 * €/ and the last term in Equation

(5.4) has a nonzero contribution. If we assume that this special
value of spin does not occur,

[Y' 1  ']0'4 (0' - 0') K(2/2 (5.5)[Y-1 ,], av 2 1 2 2

* [~y y- = 2 4/ (4/ " 4/1) K2/2 (5.6)
C2, av 2 1 1

415
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A similar calculation can be done for the nonlinear part of .
The combined nonlinear contributions to the first mode have the form*:

[y'y Y- + 09- 1 9] * bl + (terms that are zero when a 0 ie a 0)
1 ,av

(5.7)

where

by" a 2 tan2 ee [(j/)2
l Y_ I1 ,av a C^ Eel,av

2 ia [" •- 6e)]

Ye L 11,av

' -- &e)C- e e) " [- - e "e)] 1
1, av e ,av

- (1/2) (0c1)2 K2 + P *2 K2 a2 tan2 e

-(2"e) 1 ( - ) [a 0 K2 + (a " Y 1 K2]

A similar expression for the second mode can be obtained by inter-
changing subscripts 1 and 2.

These average nonlinear contributions can now be added to the co-
efficients of exp(io) in the usual derivation of the linear damping

rates and frequencies. For the special case of no control forces and
moments, the damping rates are unaffected and the frequency equations
become

P 0 + M]tan2 0e Cod01)2 K2• + P 02 K2]

~tan K2  0
[2] 1  1 2K2

' (5.8)

VFor eimpZicit,, the quite amatl nontinear terme in H have been
oni tted.

16
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Table I. Assumed Parameters for 105mm Shell

.10 * .Om CD M 0.13

S a .0087 m2  CL a 1.7
La

m w 15 kg C~ x p 0.012

1 .023 kg-in2  C M 3.8
a

I = .22 kg-rn2  C M = 0.2

1.5kg/rn3  cM +CM. 8
q a

V * 250 m/s

p = 1050 rad/s

17



and a similar equation for the other mode. These frer,-,sncy equations,
for ee a 0 and an appropriate choice for M, were the equations that

gave the excellent agreement with the numerical calculations of
Reference 6.

VI. DISCUSSION

According to our analysis, the effect of gravity on damping rates
is to replace H by H-g* . Equation (3.10) for the damping rates be-
comes -(H- g*) + PT- - (tan ee)[M 1e - P T% /2

(6.1)

Since IP TI is usually much smaller than IMI, the effect of a^ on the
e

damping rates can be neglected. Equation (6.1) can therefore b9 used
to derive stability boundaries for the maximLm trim angles for •
For a gyroscopically stable missile with positive spin

> P/2 > '2> 0),

B < 0e tan e < B2 (6.2)
where

B (2/M)[(H - g*) 0'- PT + 0

Table I gives the various parameters for a 105mm shell and
Figure 1 gives the boundaries B1 and B2 in degrees as functions of

the gyroscopic stability factor, s . The Lloyd and Brown resultsg
were limited to large stability factors and their numerical calcula-
tions were for s M 5.8 . As we can see from Figure 1, the allowableS! ^ g

range for e becomes quite small for stability factors less than 2.

18
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A particularly interesting case is that of a statically stable
missile with little or no spin (M < 0 Is I << 1) . For this case,

g

M T7 (6.3)

For an exponential air density and constant static moment coefficient,

/M - p// =a - sin eT (6.4)

where

-0P ZP Pe

Since /. i = ± /•i ,the stability bounds reduce to the very special
3

condition:

I•e tan eel < B (6.5)

where

2(H -g* - a k sin T

It is interesting to note that the value of B for the Copperhead
missile is estimated to be 12 degrees.

20
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LIST OF SYMBOLS

a Cy +* tan ]e e e

B IBj for a statically stable, nonspinning missile

k,, B1  lower and upper bounds on e tan e

C that part of the fixed-plane complex yaw forcing
function duo to the control force and moment

drag force
CD (1/2) p S V2

CL lift force
(1/2) p S V2 I•;

C roll damping moment coefficient
P

C roll moment coefficient due to canted fins

CM Magnus moment
pa (1/2) p S Z V2 0/ f1

CM + CM. sum of the damping moments
q a (1/2) p S i V2 uIl

CM static moment
(1/2) p S I V2 JCl

CN y CL + C , the normal force coefficient

D C* +k2 C
1 D a £

P

D k; 2 6 C
2 a f
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LIST OF SYMBOLS
(Continued)

FYI, Fz transverse missile-fixed components of the aerodynamic
force

FycP FzC transverse fixed-plane components of the control force

G P g V2 cos ee

G that part of the fixed-plane complex yaw forcing
function due to gravity

g magnitude of the gravity acceleration

g* g k V-2 sin T

H y CLa CD - 2 (C* +YM)

Ix) Iy axial and transverse moments of inertia

K. magnitude of the j-th modal arm, j 1, 2

k (Ix/m Z2)1

kt (Iy/m t2)½

reference length

M y kt C *

MX, My, Mz missile-fixed components of the aerodynamic moment

Myc, MZC transverse fixed-plane components of the control moment

m mass

P (I /I)/x y

p, q, r missile spin, pitch and yaw rates measured in the
missile-fixed system

24

-~~4 - *,-



LIST OF SYMBOLS
(Continued)

q1, r missile pitch and yaw rates measured in the fixed-plane
system

S reference area

SW integration interval (calibers) in an averaging process

s nondimensional arclength along the trajectory

sg gyroscopic stability factor

C + y ka2 CM

a pa

t time

u, v, w missile-fixed components of the velocity

V magnitude of the velocity

x9 y, z fixed-plane axes, the i-axis along the missile's
longitudinal axis and the k=axis always in the
horizontal plane

a ,• 8angles of attack and sideslip in the fixed-plane system

y uV

6 el

6 f fin cant angle

0 angle between the missile's axis and the horizontal

0 T trajectory angle

�. K/Kj , j = 1, 2

(q + i r) Z V"1

(v + i w) V

P air density

25
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LIST OF SYMBOLS
(Continued)

P 0air density at sea level

0 1/(6700 m)

that part of the fixed-plane complex yaw forcing
function due to the spin of the fixed-plane system

linear part of €

€/ k V-1

ýFP spin rate of the fixed-plane system

orientation angle of the j-th modal arm, j = 1, 2

•FP angular velocity of the fixed-plane system

Superscripts

() d( /dt

() d( )/ds = V-1
( ) ( ) ... except for g*

( ) fixed-plane value of ( )

( ) complex conjugate of ( )

Subscripts

( )e steady-state equilibrium value
SW

I ]av S W1 W ds

sw -i e

I f ie e d
0

26
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